Особенности электрического взаимодействия имеют много общего с гравитационными. В частности, работа силы тяжести и работа электрической силы выра
Загрузка...
Раздел:

Электричество

Электростатический (кулоновский) потенциал. Потенциал поля точечного заряженного тела (№1)

ВНИМАНИЕ! У этого текста есть несколько вариантов. Ссылки находятся после текста

Особенности электрического взаимодей­ствия имеют много общего с гравитацион­ными. В частности, работа силы тяжести и работа электрической силы выражаются по­добными зависимостями.

Для силы тяготения:

A = mg(h1 — h2) = -(mgh1 — mgh2).

Для электрической силы:

A = qE(l1 — l2) = -(qEl2 — qEl1).

Из этого можно сделать вывод, что ра­бота электрической силы равна изменению потенциальной энергии тела, взятой с про­тивоположным знаком. То есть заряженное тело в однородном электрическом поле име­ет потенциальную энергию

Wp = qEl.

Заряженное тело в электроста­тическом поле имеет потен­циальную энергию.

Потенциальная энергия заряженного те­ла определяется как электрическими харак­теристиками тела (его заряд), так и харак­теристиками выбранной точки электричес­кого поля — напряженность и координата. Изменение одной из трех характеристик ве­дет к изменению потенциальной энергии тела в целом.

Значение потенциальной энер­гии заряженного тела зависит от его заряда, напряженности электрического поля и коорди­наты.

Исследуем одну из точек электрического поля с целью определения ее энергети­ческих характеристик. Для этого проведем несколько мысленных экспериментов с то­чечным заряженным телом.

Пусть точечное тело имеет заряд q1 и находится в поле напряженностью на расстоянии l от источника поля. Его потен­циальная энергия будет равна

Wp1 = q1El.

Увеличим значение заряда в 2 раза. Его потенциальная энергия будет

Wp2 = 2q1El.

Таким образом, потенциальная энергия тела увеличится в 2 раза. Любые изменения заряда тела ведут к соответствующему из­менению его потенциальной энергии. Но в каждом случае отношение потенциальной энергии заряженного тела к его электри­ческому заряду в данной точке поля будет оставаться постоянным

Wp / q = φ.

Величина φ называется потенциалом точ­ки поля. Если в полученное соотношение подставить значение потенциальной энергии Wp, то получим

φ = qEl / q = El.

В значении потенциала отсутствуют ха­рактеристики тела, в том числе и его заряд. Поэтому можно считать справедливым ут­верждение, что потенциал является харак­теристикой электрического поля.

Физическая величина, которая является эне­ргетической характеристикой электрическо­го поля и равна отношению потенциальной энергии заряженного тела в электрическом поле к его заряду, называется потенциалом.

φ = Wp / q,

где Wp потенциальная энергия заряжен­ного тела; q — заряд тела.

При измерении потенциала пользуются единицей, которая называется вольтом (В). Единица названа в честь итальянского уче­ного Алессандро Вольта.

Алессандро Вольта (1745 — 1825) — италь­янский физик и физиолог, один из ос­нователей учения об электрическом то­ке. Изобрел смоляной электрофор, чувст­вительный электроскоп с конденсато­ром, первый химический источник элект­рического тока, проводил широкие ис­следования электрических возбужде­ний мышц и нервов.

Загрузка...

В соответствии с определением

1 В = 1 Дж / 1 Кл.

Применяются также кратные и дольные единицы потенциала:

1 милливольт = 1 мВ = 10-3 В;

1 микровольт = 1 мкВ = 10-6 В;

1 киловольт = 1 кВ = 103 В;

1 мегавольт = 1 MB = 106 В.

Все вышеизложенные соображения каса­ются однородного поля, напряженность ко­торого не зависит от координаты точки на­блюдения.

Но их можно распространить и на другие случаи, в частности на электрическое поле точечного заряженного тела. Оно неодно­родно, напряженность изменяется от точки к точке вдоль силовых линий по закону

E = (1 / 4πε0) • (q / r2).

Воспользуемся определением потенциала точки электрического поля:

φ = El = (1 / 4πε0) • (q • l / r2)

Учитывая, что l = r, получим

φ = (1 / 4πε0) • (q / r).

Потенциал поля точечного заряженного тела уменьшается обратно пропорционально расстоянию.

Потенциал не имеет направле­ния.

Потенциал является скалярной величи­ной и не имеет направления. Поэтому мож­но говорить, что вокруг точечного заряжен­ного тела существует бесконечно большое множество точек, в которых потенциалы будут одинаковы. Все они будут лежать на сферической поверхности радиуса r с цент­ром в источнике поля. Такую поверхность называют эквипотенциальной. Материал с сайта http://worldofschool.ru

Рис. 4.60. Потенциал является аддитивной величиной

На понятие потенциала распространяет­ся принцип суперпозиции. Потенциал точ­ки, в которой действуют поля нескольких электрически заряженных тел, равняется алгебраической сумме потенциалов каждого из них (рис. 4.60). При этом считается, что потенциал поля отрицательно заряженного тела отрицательный.

φA = φ1 + φ2φ3.

В общем случае

φ = φ1 + φ2 + φ3 + … + φn.

Для измерения потенциала можно исполь­зовать электрометр, который в этом случае называют электростатическим вольтметром. Если внешний металлический корпус со­единить с поверхностью Земли, потенциал которой условно считается равным нулю, то электрометром можно измерять потенциал тела, соединенного с его стержнем.

На этой странице материал по темам:
  • Урок физики. потенциальная энергия заряженного тела. потенциал

  • Кулоновский потенциальная энергия

  • Как определяется потенциал точечного заряженного тела

  • Як визначається потенціал точкового зарядженого тіла?

Вопросы по этому материалу:
  • Почему заряженное тело в электрическом поле имеет потен­циальную энергию?

  • От чего зависит потенциальная энергия заряженного тела в электрическом поле?

  • Какое свойство поля характеризует потенциал?

  • Как определяется потенциал поля точечного заряженного тела?

  • Какие единицы измерения потенциала?

  • Каким прибором можно измерять потенциал?

  • Как применяется принцип суперпозиции к потенциалу?

Материал с сайта http://WorldOfSchool.ru