Повторяющиеся процессы определяют нашу жизнь. Зима сменяет лето, день сменяет ночь, вдох сменяет выдох. Бежит время, и его мы тоже отмеряем повторяющи
Загрузка...
Раздел:

Теория колебаний‎

Колебания. Затухающие и незатухающие

Повторяющиеся процессы определяют нашу жизнь. Зима сменяет лето, день сменяет ночь, вдох сменяет выдох. Бежит время, и его мы тоже отмеряем повторяющимися процессами. Повто­ряющиеся процессы и есть колебания.

Колебаниями называются повторяющи­еся во времени изменения физической величи­ны.

Если эти изменения повторяются через оп­ределенный интервал времени, то колебания называются «периодическими». Наименьший интервал времени T, через который повторяют­ся значения физической величины A(t), называ­ется периодом ее колебаний A(t + Т) = A(t). Число колебаний в единицу времени v называ­ется частотой колебаний. Частота колебаний и период связаны соотношением v = 1 / Т. Колебания системы, которые совершаются в от­сутствие внешнего воздействия, называются свободными. Для возбуждения колебаний необ­ходимо внешнее воздействие. Системе извне сообщается запас энергии, за счет которой и происходят колебания. Это внешнее воздействие выводит систему из положения равновесия, и в дальнейшем она совершает дви­жение около положения равновесия, уходя и возвращаясь к нему, по инерции проскакивая его. И так повторяется раз за разом. Движение в данном контексте означает измене­ние состояния. В механических системах это может быть перемещение в пространстве или изменение давления, в электрических — изменение величины заряда или напря­женности поля. Существует бесконечное множество раз­личных движений и соответствующих им колебательных процессов.

Любую систему, соверша­ющую колебательное дви­жение, именуют «осцилля­тор» (в пер. с лат. oscillo — «колеблюсь»), соответст­венно и слово «колеба­ния» часто заменяют тер­мином «осцилляции».

Если амплитуда колебаний не меняется во времени, гармо­нические колебания называются незатухающими.

Диффе­ренциальное уравнение, описывающее гармонические не­затухающие колебания, имеет вид:

d2A(t) / dt2 + ω02A(t) = 0.

Загрузка...

Производную по времени в физике принято обозна­чать точкой над дифференцируемой функцией. Тогда уравнение записывается:

Ȧ + ω02A = 0.

Если амплитуда уменьшается с течением времени, коле­бания называются затухающими.

Часто встречающийся пример затухающих колебаний — колебания, в кото­рых амплитуда уменьшается по закону

A0(t) = a0e-βt.

Коэффициент затухания β > 0.

В системе СИ время из­меряется в с, а частота со­ответственно в обратных секундах (с-1). Эта единица измерения имеет специ­альное название «герц», 1 Гц = 1 с-1. Немецкий фи­зик Генрих Рудольф Герц много занимался изуче­нием электромагнитных колебаний и волн. «Ген­рих Герц» — первые слова, посланные с Земли в кос­мос. Материал с сайта http://worldofschool.ru

Затухающие периодические колебания
Затухающие апериодические колебания
На этой странице материал по темам:
  • Свободные незатухающие колебания. шпора

  • Затухающие колебания в организме человека

  • Реферат на тему теория колебаний

Материал с сайта http://WorldOfSchool.ru
Предыдущее Ещё по теме: Следующее
Добротность колебательной системы Свободные колебания Механические колебания